




















































































































































What is Knowledge Representation (KR)? 

Knowledge Representation (KR) in Artificial Intelligence (AI) is the process of 

structuring and storing information so that an AI system can reason, learn, 

and make decisions. It is a bridge between human understanding and 

machine processing. 

KR is essential for: 

• Understanding complex environments (e.g., self-driving cars, medical 

diagnosis). 

• Enabling reasoning and decision-making (e.g., expert systems). 

• Storing and retrieving knowledge efficiently (e.g., chatbots, search 

engines). 

 

Types of Knowledge in AI 

AI systems need different types of knowledge, including: 

Type of Knowledge Example 

Declarative Knowledge (facts) "Paris is the capital of France." 

Procedural Knowledge (how to do 

something) 
"To drive, press the gas pedal." 

Semantic Knowledge (meaning and 

relationships) 
"Dogs are mammals." 

Episodic Knowledge (specific events) "I had coffee this morning." 

Common Sense Knowledge "Water is wet." 

Meta-Knowledge (knowledge about 

knowledge) 

"I know that I don’t know this 

fact." 

 

Approaches to Knowledge Representation 

There are several ways AI systems can represent and process knowledge: 



KR Approach Description Example 

Logical 

Representation 

Uses formal logic 

(propositional & first-order 

logic). 

If it rains, the ground is 

wet. 

Semantic 

Networks 

Graph-based structure with 

entities and relationships. 
"Cat → is a → Mammal" 

Frames 
Object-oriented structure with 

attributes and values. 

Person(Name: Alice, Age: 

30, Job: Engineer) 

Production Rules 
IF-THEN rules for decision-

making. 

IF temperature > 100°C 

THEN water boils. 

Ontologies 

Structured knowledge in 

hierarchical form (used in the 

Semantic Web). 

Ontology of "Animals" 

includes "Mammals" and 

"Birds". 

Fuzzy Logic 
Handles uncertainty using 

degrees of truth (0 to 1). 

"The room is warm (0.7 

truth value)." 

Bayesian 

Networks 

Probabilistic models for 

reasoning under uncertainty. 

If a patient has a cough, 

the probability of flu is 

60%. 

 

Example: Knowledge Representation in AI Chatbots 

Consider an AI chatbot that helps with medical diagnosis. 

Approach 1: Rule-Based System (Production Rules) 

IF fever AND cough THEN flu. 

IF sore_throat AND no_fever THEN cold. 

Approach 2: Semantic Network 

 

Flu → causes → Fever 

Flu → causes → Cough 



Cold → causes → Sore Throat 

Approach 3: Bayesian Network (Probabilistic KR) 

• P(Flu∣Fever)=0.8P(Flu | Fever) = 0.8P(Flu∣Fever)=0.8 

• P(Cold∣SoreThroat)=0.6P(Cold | Sore Throat) = 

0.6P(Cold∣SoreThroat)=0.6 

The chatbot can reason about symptoms and suggest possible illnesses. 

 

challenges in Knowledge Representation 

  Incomplete Knowledge – AI may lack all the facts. 

  Uncertainty – Some knowledge is probabilistic (handled by Bayesian 

Networks, Fuzzy Logic). 

  Ambiguity – Natural language is complex (handled by NLP techniques). 

  Scalability – Storing vast knowledge efficiently (handled by ontologies 

and knowledge graphs). 

 

Applications of Knowledge Representation 

   Expert Systems – Medical diagnosis (IBM Watson), legal reasoning 

   Search Engines – Google Knowledge Graph 

   Robotics – Navigation and decision-making 

   AI Assistants – Siri, Alexa (understanding context) 

   Self-Driving Cars – Recognizing road signs, pedestrians 

 

 

 

Constant Propagation  

In knowledge representation (KR), constant propagation is a logical optimization technique used to 

simplify reasoning by replacing known constant values in a knowledge base. This helps in inference, 

rule-based systems, and automated reasoning. 

 



How Constant Propagation Works in KR 

When a fact or rule contains constants, those constants can be propagated through the system to 

simplify expressions, remove redundant computations, and improve efficiency. 

Example in Rule-Based Systems 

Consider a Prolog-style knowledge base: 

age(john, 30). 

age(mary, 25). 

is_adult(X) :- age(X, A), A >= 18. 

Here, instead of checking A >= 18 every time, we can directly infer: 

is_adult(john).  % Directly inferred 

is_adult(mary).  % Directly inferred 

This avoids unnecessary computations when querying whether someone is an adult. 

 

Example in First-Order Logic (FOL) 

Suppose we have a knowledge base: 

1. father(John)=Robertfather(John) = Robertfather(John)=Robert (John’s father is Robert) 

2. father(Robert)=Williamfather(Robert) = Williamfather(Robert)=William (Robert’s father is 

William) 

3. grandfather(X)=father(father(X))grandfather(X) = 

father(father(X))grandfather(X)=father(father(X)) 

Using constant propagation, we can directly derive: 

grandfather(John)=Williamgrandfather(John) = Williamgrandfather(John)=William  

Instead of repeatedly applying the father() function, we replace known constants directly. 

 

Application in AI and Knowledge Graphs 

1. Semantic Web (RDF & OWL Reasoning) 

o In ontology reasoning, constant propagation simplifies relationships. 

o Example: If hasAge(Alice, 25), then hasAge(Bob, 25) (if Bob and Alice are the same 

entity). 

2. Expert Systems & Decision Trees 

o Precomputing constant values reduces rule evaluations. 

o Example: A medical expert system with rules:  



fever(X) :- temperature(X, T), T > 38. 

If temperature(john, 39), it simplifies to fever(john). 

3. Logic Programming (Prolog, Datalog) 

o Directly substitutes values for predicates to avoid redundant computations. 

 

Benefits of Constant Propagation in KR 

   Faster inference – Precomputes known values, reducing real-time reasoning workload. 

   Memory optimization – Reduces storage by eliminating redundant evaluations. 

   Simplifies rule evaluation – Allows efficient decision-making in AI reasoning. 

 

 

 

Representing Knowledge Using Rules 

In Knowledge Representation (KR), rules are used to encode knowledge in a structured way. Rule-

based systems define relationships, constraints, and logical inferences that allow AI systems to 

reason and derive conclusions. 

 

Types of Rules in Knowledge Representation 

1⃣ Production Rules (IF-THEN Rules) 

• Format: IF (condition) THEN (action/conclusion) 

• Used in expert systems and decision-making AI. 

   Example (Medical Diagnosis Rule) 

IF (temperature > 38°C) AND (cough = yes)   

THEN (diagnosis = "Possible flu") 

        Implementation in Prolog: 

flu(X) :- temperature(X, T), T > 38, cough(X, yes). 

     If John has 39°C temperature and a cough, the system infers flu(john). 

 

2⃣ Derivation Rules (Inference Rules) 

• Used in logical reasoning and knowledge graphs. 

• Helps derive new facts from existing facts. 



   Example (Family Relationships) 

less 

IF (parent(X, Y)) AND (parent(Y, Z))   

THEN (grandparent(X, Z)) 

        Implementation in Prolog: 

grandparent(X, Z) :- parent(X, Y), parent(Y, Z). 

     If Alice is Bob’s parent and Bob is Charlie’s parent, then Alice is Charlie’s grandparent. 

 

3⃣ Constraint Rules 

• Defines what is allowed or restricted in a knowledge base. 

• Used in AI planning, business rules, and databases. 

   Example (Bank Loan Eligibility) 

IF (income > $50,000) AND (credit_score > 700)   

THEN (loan_approved = yes) 

        Implementation in SQL-like Rule System: 

sql 

SELECT customer_id   

FROM applicants   

WHERE income > 50000 AND credit_score > 700; 

 

4️⃣ Fuzzy Rules (For Handling Uncertainty) 

• Used in fuzzy logic systems to deal with imprecise data. 

• Instead of strict "yes/no," it considers degrees of truth. 

   Example (Fan Speed Control Based on Temperature) 

csharp 

IF (temperature is high)   

THEN (fan_speed is fast) 

        Fuzzy Logic Example: 

python 

import skfuzzy as fuzz 



temperature = fuzz.trimf([30, 40, 50]) 

fan_speed = fuzz.trimf([0, 50, 100]) 

     This allows gradual adjustment rather than an abrupt ON/OFF decision. 

 

Applications of Rule-Based Knowledge Representation 

   Expert Systems (e.g., MYCIN for medical diagnosis) 

   Chatbots & Virtual Assistants (e.g., rule-based responses in AI bots) 

   Semantic Web & Ontologies (e.g., RDF, OWL for knowledge graphs) 

   Business Rule Management Systems (e.g., Drools, IBM Operational Decision Manager) 

   AI Planning & Robotics (e.g., decision-making in self-driving cars) 

 

 

 

Rule-Based Deduction System in Knowledge 

Representation 

A Rule-Based Deduction System is a knowledge-based system that derives new facts from existing 

facts using rules and logical inference. It is widely used in expert systems, AI reasoning, and 

automated decision-making. 

 

Key Components of a Rule-Based Deduction System 

1⃣ Knowledge Base (KB) – Contains facts and rules. 

2⃣ Inference Engine – Applies rules to known facts to derive new facts. 

3⃣ Working Memory – Stores intermediate facts generated during reasoning. 

4⃣ User Interface – Allows interaction with the system. 

 

How Rule-Based Deduction Works 

• Rules are written in IF-THEN format. 

• The inference engine applies forward or backward chaining to derive conclusions. 

 

Types of Rule-Based Deduction 

1⃣ Forward Chaining (Data-Driven Inference) 

• Starts with known facts and applies rules to infer new facts. 

• Used in expert systems and automated reasoning. 



   Example: Diagnosing a Disease 

Facts: 

fever(john). 

cough(john). 

Rule: 

IF (fever(X) AND cough(X)) THEN flu(X). 

        Prolog Implementation: 

flu(X) :- fever(X), cough(X). 

     Query: ?- flu(john). 

   Output: Yes (because John has fever and cough). 

 

2⃣ Backward Chaining (Goal-Driven Inference) 

• Starts with a goal and works backwards to find supporting facts. 

• Used in theorem proving and logic programming (e.g., Prolog). 

   Example: Checking if John has the flu 

Goal: flu(john)? 

1. The system checks: Does John have fever and cough? 

2. If facts exist → Conclude flu(john). 

3. If facts do not exist → Ask user or perform further deductions. 

        Prolog Example (Backward Chaining) 

flu(X) :- fever(X), cough(X). 

fever(john). 

cough(john). 

     Query: ?- flu(john). 

   Output: Yes (because Prolog checks rules recursively). 

 

Applications of Rule-Based Deduction Systems 

   Expert Systems – MYCIN (Medical Diagnosis), CLIPS (Decision Making) 

   AI Chatbots – Rule-based conversational AI 

   Theorem Provers – Prolog, Automated Reasoning Systems 

   Semantic Web & Ontologies – RDF, OWL reasoning 

   Business Rule Engines – Drools, IBM Operational Decision Manager 



 

Advantages & Disadvantages 

   Advantages: 

  Transparent reasoning process 

  Easy to modify rules 

  Suitable for well-defined domains 

  Disadvantages: 

  Cannot handle uncertainty well (unless fuzzy logic is used) 

  Computationally expensive for large knowledge bases 

  Hard to scale for complex real-world scenarios 

 

 

 

Reasoning Under Uncertainty in Knowledge 

Representation 

In Knowledge Representation (KR), reasoning under uncertainty deals with situations where facts 

and rules are incomplete, imprecise, or uncertain. Traditional logic-based systems (like Prolog) work 

well with definite knowledge, but real-world scenarios (e.g., medical diagnosis, self-driving cars, AI 

assistants) require handling probabilistic and fuzzy information. 

 

Types of Uncertainty in Knowledge Representation 

1⃣ Probability-Based Uncertainty (e.g., Bayesian Networks) 

2⃣ Fuzzy Logic (e.g., Handling vague concepts like "tall" or "hot") 

3⃣ Non-Monotonic Reasoning (e.g., Default and belief-based reasoning) 

4⃣ Dempster-Shafer Theory (e.g., Combining evidence from multiple sources) 

5⃣ Possibility Theory (e.g., Alternative to probability for handling vagueness) 

 

Methods for Reasoning Under Uncertainty 

1⃣ Bayesian Networks (Probabilistic Reasoning) 

• Uses probabilities to model uncertainty. 

• Based on Bayes' Theorem: P(H∣E)=P(E∣H)P(H)P(E)P(H|E) = \frac{P(E|H) 

P(H)}{P(E)}P(H∣E)=P(E)P(E∣H)P(H) Where:  

o P(H∣E)P(H|E)P(H∣E) = Probability of hypothesis HHH given evidence EEE. 

o P(E∣H)P(E|H)P(E∣H) = Likelihood of evidence if HHH is true. 



o P(H)P(H)P(H) = Prior probability of HHH. 

   Example: Medical Diagnosis 

If 80% of flu patients have a fever, and 5% of the general population has a fever, we can compute: 

P(Flu∣Fever)=(0.8∗0.1)/0.05=0.16P(Flu | Fever) = (0.8 * 0.1) / 0.05 = 0.16 

P(Flu∣Fever)=(0.8∗0.1)/0.05=0.16  

Applications: AI-based diagnosis, spam detection, robotics. 

 

2⃣ Fuzzy Logic (Handling Vagueness and Approximation) 

• Used when information is not binary (True/False) but gradual (0 to 1). 

• Example:  

o Crisp Logic: Temperature > 30°C → "Hot" (Strict condition). 

o Fuzzy Logic: Temperature = 28°C → "Moderately Hot" (Partial truth). 

   Example: Controlling a Fan Based on Temperature 

IF temperature is HIGH THEN fan speed is FAST. 

        Python Example using skfuzzy 

import skfuzzy as fuzz 

import numpy as np 

 

temperature = np.arange(20, 41, 1) 

hot = fuzz.trimf(temperature, [30, 35, 40]) 

print(hot)  # Membership values for "hot" category 

Applications: AI controllers, robotics, recommendation systems. 

 

3⃣ Non-Monotonic Reasoning (Default & Belief-Based Reasoning) 

• In classical logic, once something is proven, it never changes. 

• In non-monotonic reasoning, new evidence can retract conclusions. 

   Example: Bird & Flight Assumption 

IF X is a bird THEN X can fly. 

IF X is a penguin THEN X cannot fly. 

If we first assume "Tweety is a bird," we conclude "Tweety can fly." 

Later, if we learn "Tweety is a penguin," we revise our belief and conclude "Tweety cannot fly." 

        Prolog Implementation (Non-Monotonic Logic) 



flies(X) :- bird(X), \+ penguin(X). 

bird(tweety). 

penguin(tweety). 

     Query: ?- flies(tweety). 

   Output: No (because Tweety is a penguin). 

Applications: AI planning, knowledge graphs, dynamic decision-making. 

 

4️⃣ Dempster-Shafer Theory (Evidence-Based Reasoning) 

• Used when probabilities are unknown, but we have belief and doubt. 

• Allows combining evidence from multiple sources. 

   Example: Identifying an Object Based on Two Sensors 

Sensor A: 60% confidence it's a car. 

Sensor B: 50% confidence it's a car. 

Combined belief using Dempster's Rule: 75%. 

Applications: Sensor fusion, fraud detection, AI-based surveillance. 

 

Comparison of Uncertainty Handling Methods 

Method Best For Example Use Case 

Bayesian Networks Probabilistic reasoning Medical diagnosis, spam filters 

Fuzzy Logic Approximate reasoning AI controllers, smart home systems 

Non-Monotonic Logic Revising beliefs AI planning, expert systems 

Dempster-Shafer Combining evidence Multi-sensor fusion, cybersecurity 

 

 

Bayesian Probabilistic Inference and Dempster-Shafer 

Theory 

Bayesian inference and Dempster-Shafer theory are two key reasoning under uncertainty 

approaches in knowledge representation (KR). 

 

1⃣ Bayesian Probabilistic Inference 



Bayesian inference is based on Bayes' theorem, which updates the probability of a hypothesis as 

new evidence appears. 

Bayes' Theorem: 

P(H∣E)=P(E∣H)⋅P(H)P(E)P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}P(H∣E)=P(E)P(E∣H)⋅P(H)  

Where: 

• P(H∣E)P(H|E)P(H∣E) = Probability of hypothesis HHH given evidence EEE (posterior). 

• P(E∣H)P(E|H)P(E∣H) = Probability of evidence given hypothesis (likelihood). 

• P(H)P(H)P(H) = Prior probability of the hypothesis. 

• P(E)P(E)P(E) = Total probability of the evidence. 

Example: Medical Diagnosis 

Let’s say a doctor wants to determine if a patient has flu (HHH) based on the symptom fever (EEE). 

• Prior Probability P(H)P(H)P(H) = 10% (1 in 10 people have the flu). 

• Likelihood P(E∣H)P(E|H)P(E∣H) = 80% (80% of flu patients have fever). 

• Evidence Probability P(E)P(E)P(E) = 5% (5% of the population has fever). 

Using Bayes' Theorem: 

P(Flu∣Fever)=0.8×0.10.05=0.16P(Flu | Fever) = \frac{0.8 \times 0.1}{0.05} = 

0.16P(Flu∣Fever)=0.050.8×0.1=0.16  

     The probability that a patient has the flu given that they have a fever is 16%. 

   Applications: Medical diagnosis, spam filters, recommendation systems, robotics. 

 

2⃣ Dempster-Shafer Theory (Evidence Theory) 

Dempster-Shafer theory (DST) is a generalization of probability theory that deals with uncertainty 

and incomplete knowledge. Unlike Bayes' Theorem, DST does not require prior probabilities and 

allows for "degrees of belief" based on evidence. 

Key Concepts in Dempster-Shafer Theory 

• Belief function Belief(A)Belief(A)Belief(A): The degree of confidence in A being true. 

• Plausibility function Plausibility(A)Plausibility(A)Plausibility(A): The maximum possible belief 

in A (accounts for unknowns). 

• Mass function m(A)m(A)m(A): A function that assigns belief masses to different subsets of 

the hypothesis space. 

Dempster’s Rule of Combination 

If two independent sources give mass functions m1m_1m1 and m2m_2m2, the combined belief is: 



m(A)=∑X∩Y=Am1(X)⋅m2(Y)1−Km(A) = \frac{\sum_{X \cap Y = A} m_1(X) \cdot m_2(Y)}{1 - 

K}m(A)=1−K∑X∩Y=Am1(X)⋅m2(Y)  

where KKK represents the conflict between the two sources. 

Example: Identifying an Object Based on Two Sensors 

Imagine two sensors trying to identify whether an object is a car (C) or a bike (B): 

• Sensor A:  

o 60% sure it's a car. 

o 30% sure it's a bike. 

o 10% uncertainty. 

• Sensor B:  

o 50% sure it's a car. 

o 40% sure it's a bike. 

o 10% uncertainty. 

Using Dempster’s Rule, we combine the belief values to get a final updated belief for each 

possibility. 

   Applications: Sensor fusion, AI decision-making, fraud detection, autonomous vehicles. 

 

Comparison: Bayesian Inference vs. Dempster-Shafer Theory 

Feature Bayesian Inference Dempster-Shafer Theory 

Requires Prior 

Probabilities? 
   Yes   No 

Handles Uncertainty?    Yes, using probabilities    Yes, using belief functions 

Deals with Missing 

Information? 
  No (needs prior data)    Yes (supports unknowns) 

Mathematical Complexity Moderate Higher 

Combining Evidence Uses conditional probabilities Uses Dempster’s Rule 

Best Used For 
Probabilistic reasoning (e.g., 

medical AI) 

Multi-source evidence fusion (e.g., 

sensor AI) 

 

Note: 



   Use Bayesian Networks if you have prior probabilities and want probabilistic reasoning. 

   Use Dempster-Shafer Theory if you want to combine uncertain evidence from multiple sources 

without needing priors. 

 

 

 

 

Simple example for students 
Bayesian Probabilistic Inference: "Brush Teeth" Example 

Bayesian probabilistic inference helps us make decisions based on prior knowledge and new 

evidence. Let’s apply Bayes’ Theorem to the everyday habit of brushing teeth and its relationship 

with having fresh breath. 

 

1⃣ Problem Statement: Does Fresh Breath Indicate That a Person Brushed Their Teeth? 

Let: 

• HHH = Person brushed their teeth 

• EEE = Person has fresh breath 

We want to compute P(H|E), the probability that a person brushed their teeth given that they have 

fresh breath. 

Bayes' Theorem Formula: 

P(H∣E)=P(E∣H)⋅P(H)P(E)P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}P(H∣E)=P(E)P(E∣H)⋅P(H)  

Assume the following probabilities: 

1. Prior Probability P(H)P(H)P(H) (chance that a person brushed their teeth) = 0.8 (80%) 

2. Likelihood P(E∣H)P(E|H)P(E∣H) (probability of fresh breath if they brushed) = 0.9 (90%) 

3. Total Probability of Fresh Breath P(E)P(E)P(E):  

o Fresh breath can also occur if they used mouthwash or chewed gum 

o Suppose 10% of people don't brush but still have fresh breath 

o Then: P(E)=P(E∣H)P(H)+P(E∣¬H)P(¬H)P(E) = P(E|H)P(H) + P(E|\neg H)P(\neg 

H)P(E)=P(E∣H)P(H)+P(E∣¬H)P(¬H) P(E)=(0.9×0.8)+(0.1×0.2)=0.72+0.02=0.74P(E) = (0.9 

\times 0.8) + (0.1 \times 0.2) = 0.72 + 0.02 = 

0.74P(E)=(0.9×0.8)+(0.1×0.2)=0.72+0.02=0.74  

 

2⃣ Apply Bayes' Theorem 



P(H∣E)=0.9×0.80.74=0.720.74=0.973P(H|E) = \frac{0.9 \times 0.8}{0.74} = \frac{0.72}{0.74} = 

0.973P(H∣E)=0.740.9×0.8=0.740.72=0.973  

     If a person has fresh breath, there is a 97.3% probability that they brushed their teeth. 

 

 

Real-Life Applications of Bayesian Inference 

   Medical AI – Diagnosing diseases based on symptoms 

   Spam Filters – Determining if an email is spam based on keywords 

   AI Assistants – Making smart decisions based on user behavior 

   Self-Driving Cars – Assessing road conditions based on sensor data 

 

 

 

 

Dempster-Shafer Theory (DST) with "Brush Teeth" 

Example:  

Dempster-Shafer Theory (DST) is used for reasoning under uncertainty, especially when multiple 

sources provide partial or conflicting evidence. Unlike Bayesian inference, DST does not require 

prior probabilities and allows for degrees of belief and uncertainty. 

 

1⃣ Problem Statement: Did a Person Brush Their Teeth? 

We have two independent sources of evidence: 

1. A camera in the bathroom that may have recorded the person brushing. 

2. A witness (e.g., roommate) who may have seen the person brushing. 

Each source provides some belief, doubt, and uncertainty about whether the person brushed their 

teeth. 

 

2⃣ Assigning Mass Functions to Evidence Sources 

We define three hypotheses: 

• B (Brushed Teeth) 

• ~B (Did NOT Brush Teeth) 

• U (Uncertainty / Don't Know) 



Belief Masses from the Two Evidence Sources 

  Camera Evidence 

Hypothesis Belief Mass (m1) 

Brushed Teeth (B) 0.7 

Did NOT Brush (~B) 0.1 

Uncertainty (U) 0.2 

  Witness Testimony 

Hypothesis Belief Mass (m2) 

Brushed Teeth (B) 0.6 

Did NOT Brush (~B) 0.2 

Uncertainty (U) 0.2 

Each source has some uncertainty, as the camera might not have captured everything, and the 

witness might be mistaken. 

 

Combine Evidence Using Dempster’s Rule 

Dempster’s Rule of Combination: 

m(A)=∑X∩Y=Am1(X)⋅m2(Y)1−Km(A) = \frac{\sum_{X \cap Y = A} m_1(X) \cdot m_2(Y)}{1 - 

K}m(A)=1−K∑X∩Y=Am1(X)⋅m2(Y)  

where KKK represents the conflict between the sources. 

Step 1: Compute Raw Beliefs 

Multiplying mass functions for all possible intersections: 

Combined 

Hypothesis 
Computation 

Brushed 

Teeth (B) 

(0.7×0.6)+(0.7×0.2)+(0.6×0.2)=0.42+0.14+0.12=0.68(0.7 \times 0.6) + (0.7 \times 0.2) 

+ (0.6 \times 0.2) = 0.42 + 0.14 + 0.12 = 

0.68(0.7×0.6)+(0.7×0.2)+(0.6×0.2)=0.42+0.14+0.12=0.68 

Did NOT 

Brush (~B) 
(0.1×0.2)=0.02(0.1 \times 0.2) = 0.02(0.1×0.2)=0.02 

Uncertainty 

(U) 

(0.2×0.2)+(0.2×0.1)=0.04+0.02=0.06(0.2 \times 0.2) + (0.2 \times 0.1) = 0.04 + 0.02 = 

0.06(0.2×0.2)+(0.2×0.1)=0.04+0.02=0.06 



Combined 

Hypothesis 
Computation 

Conflict (K) 
(0.7×0.2)+(0.1×0.6)=0.14+0.06=0.2(0.7 \times 0.2) + (0.1 \times 0.6) = 0.14 + 0.06 = 

0.2(0.7×0.2)+(0.1×0.6)=0.14+0.06=0.2 

Step 2: Normalize by (1 - Conflict) 

K=0.2K = 0.2K=0.2  

Final adjusted beliefs: 

• Brushed Teeth (B) = 0.68/(1−0.2)=0.850.68 / (1 - 0.2) = 0.850.68/(1−0.2)=0.85 

• Did NOT Brush (~B) = 0.02/(1−0.2)=0.0250.02 / (1 - 0.2) = 0.0250.02/(1−0.2)=0.025 

• Uncertainty (U) = 0.06/(1−0.2)=0.0750.06 / (1 - 0.2) = 0.0750.06/(1−0.2)=0.075 

Final Result: 

   85% belief that the person brushed their teeth 

  2.5% belief that they did NOT brush 

                       7.5% uncertainty remains 

 











































































































































What is an Expert System? 

An expert system is a computer program that is designed to solve complex problems and to provide 

decision-making ability like a human expert. It performs this by extracting knowledge from its 

knowledge base using the reasoning and inference rules according to the user queries. 

The expert system is a part of AI, and the first ES was developed in the year 1970, which was the first 

successful approach of artificial intelligence. It solves the most complex issue as an expert by 

extracting the knowledge stored in its knowledge base. The system helps in decision making for 

compsex problems using both facts and heuristics like a human expert. It is called so because it 

contains the expert knowledge of a specific domain and can solve any complex problem of that 

particular domain. These systems are designed for a specific domain, such as medicine, science, etc. 

The performance of an expert system is based on the expert's knowledge stored in its knowledge 

base. The more knowledge stored in the KB, the more that system improves its performance. One of 

the common examples of an ES is a suggestion of spelling errors while typing in the Google search 

box. 

 

Below is the block diagram that represents the working of an expert system: 

 

Below are some popular examples of the Expert System: 

o DENDRAL: It was an artificial intelligence project that was made as a chemical analysis expert 

system. It was used in organic chemistry to detect unknown organic molecules with the help 

of their mass spectra and knowledge base of chemistry. 

o MYCIN: It was one of the earliest backward chaining expert systems that was designed to 

find the bacteria causing infections like bacteraemia and meningitis. It was also used for the 

recommendation of antibiotics and the diagnosis of blood clotting diseases. 

o PXDES: It is an expert system that is used to determine the type and level of lung cancer. To 

determine the disease, it takes a picture from the upper body, which looks like the shadow. 

This shadow identifies the type and degree of harm. 

o CaDeT: The CaDet expert system is a diagnostic support system that can detect cancer at 

early stages. 

Characteristics of Expert System 

https://go.ezodn.com/ads/charity/proxy?p_id=b91c9ddf-0119-479a-7886-2da21bde28ff&d_id=660371&imp_id=4236794674279107&c_id=1084&l_id=10016&url=https%3A%2F%2Fwww.amazonconservation.org%2Ftake-action%2Fdonate%2F&ffid=1&co=IN
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o High Performance: The expert system provides high performance for solving any type of 

complex problem of a specific domain with high efficiency and accuracy. 

o Understandable: It responds in a way that can be easily understandable by the user. It can 

take input in human language and provides the output in the same way. 

o Reliable: It is much reliable for generating an efficient and accurate output. 

o Highly responsive: ES provides the result for any complex query within a very short period of 

time. 

Components of Expert System 

An expert system mainly consists of three components: 

o User Interface 

o Inference Engine 

o Knowledge Base 

 

1. User Interface 

With the help of a user interface, the expert system interacts with the user, takes queries as an input 

in a readable format, and passes it to the inference engine. After getting the response from the 

inference engine, it displays the output to the user. In other words, it is an interface that helps a 

non-expert user to communicate with the expert system to find a solution. 

2. Inference Engine(Rules of Engine) 

o The inference engine is known as the brain of the expert system as it is the main processing 

unit of the system. It applies inference rules to the knowledge base to derive a conclusion or 



deduce new information. It helps in deriving an error-free solution of queries asked by the 

user. 

o With the help of an inference engine, the system extracts the knowledge from the 

knowledge base. 

o There are two types of inference engine: 

o Deterministic Inference engine: The conclusions drawn from this type of inference engine 

are assumed to be true. It is based on facts and rules. 

o Probabilistic Inference engine: This type of inference engine contains uncertainty in 

conclusions, and based on the probability. 

Inference engine uses the below modes to derive the solutions: 

o Forward Chaining: It starts from the known facts and rules, and applies the inference rules to 

add their conclusion to the known facts. 

o Backward Chaining: It is a backward reasoning method that starts from the goal and works 

backward to prove the known facts. 

3. Knowledge Base 

o The knowledgebase is a type of storage that stores knowledge acquired from the different 

experts of the particular domain. It is considered as big storage of knowledge. The more the 

knowledge base, the more precise will be the Expert System. 

o It is similar to a database that contains information and rules of a particular domain or 

subject. 

o One can also view the knowledge base as collections of objects and their attributes. Such as 

a Lion is an object and its attributes are it is a mammal, it is not a domestic animal, etc. 

Components of Knowledge Base 

o Factual Knowledge: The knowledge which is based on facts and accepted by knowledge 

engineers comes under factual knowledge. 

o Heuristic Knowledge: This knowledge is based on practice, the ability to guess, evaluation, 

and experiences. 

Knowledge Representation: It is used to formalize the knowledge stored in the knowledge base 

using the If-else rules. 

Knowledge Acquisitions: It is the process of extracting, organizing, and structuring the domain 

knowledge, specifying the rules to acquire the knowledge from various experts, and store that 

knowledge into the knowledge base. 

 

 

 



















 

 

 









 


